Tag Archives: Public Health

Say Goodbye…to Antibacterial Soaps!

Yuk!The antibacterial handwahing debate

That’s disgusting!

Wash it off!

Indeed, bacteria crawling all over the skin can seem horrible.  But, that’s how soap and cleaning products have been advertised to the general public over the past four decades.

The marketing has been so effective, unfortunately, that now; it’s considered the standard of care.

Or, is it?

Certainly, having bad bacteria crawling over places where your skin makes contact has been synonymous with public health offices, clinic and school management, and nurses everywhere appealing to wash, Wash, WASH those hands! (Handwashing: Clean Hands Save Lives, 2016; Meers and Yeo, 2009; Ojajärvi, 2009; Turner, Gauthier, Roby, Larson & Gauthier, 1994); Ansari, Sattar, Springthorpe, Wells and Tostowaryk, 1989).

But, is having antiseptic or antibacterial additives needed in plain soap to aggressively kill the bacteria?

Washing hands with foam soap
Courtesy FDA: Foam Soap

The debate has waged on ever since this new category of soap products launched.  And, the arguments have covered the spectrum.

On one side have been those who support the claim that having antibacterial chemicals added to plain and simple soap ensures bacteria is…dead.  After all, bacterial contamination is the root of contagious spread of disease, right?

On the other side are those who support the claim that basic, detergent soap is sufficient to loosen dirt, oils, and foreign bacteria and then dilute them away with water.  Additionally, antibacterial additives in soaps produce a negative outcome:  they kill off the body’s protective, bacterial line of defense.

Yes!  Each part of the body, from underneath the fingernails to inside the nostrils… from the surface of the eyeball to the lining of the intestines… even the surface of the skin…has unique bacteria that live, quite normally, in their own little niche.  Bacteria living alone in a protected environment are called, “normal flora.”

Unseen by the naked eye, these bacteria are harmless… when they live where they belong.  And, if they accidentally invade the wrong area (like when you get a cut in your skin) they will begin to inflame and infect just as you would expect of bacteria.

But, introduce a foreign bacteria that does not belong on its “turf” and normal flora bacteria will fight to kill it FOR YOU as YOUR OWN ANTIBACTERIAL AGENT!

Take Staphylococcus aureus and several of the Streptococcus classification of bacteria as an example.

Staphylococcus aureas, Gram stain: positive (Courtesy Wikipedia)
Staphylococcus aureas, Gram stain: positive (Courtesy Wikipedia)

These are Gram-positive bacteria that are considered normal flora teaming all over the body’s skin.  (“Gram” is just a blue dye that these bacteria love to soak up.  The stain is “positive” when seen on a microscope slide…and is represented in the attached post image…) They willingly protect and defend against invading bacteria from entering small cracks and the sweat and oil pores in your skin…even your nose!

Cellulitis (Courtesy Wikipedia)
Cellulitis (Courtesy Wikipedia)

But, underneath the skin, where the blood stream flows, they are uninvited guests and sadly become “bulls in a fine-china shop”!  These bacteria wreak havoc causing all sorts of infections from surface skin abscesses to limb-threatening cellulitis to whole-body, life-threatening bacteremia and sepsis. And, if they get in the throat they cause things like strep throat and pneumonia.

Then, there are the lowly E. coli (Escherichia coli) that live quite peacefully within the lining of the intestines.

E. coli
E. coli

They are responsible for important digestion of your food for proper absorption into the bloodstream.  E. coli contaminate food when harvesting, produce, and restaurant handlers do not wash their hands, however, and cause a variety of illnesses when introduced through the mouth into the stomach.

Unfortunately, E. coli (and other important intestinal “normal flora”) is killed when you take oral antibiotics.  This is why you frequently have diarrhea with antibiotics.  Then, you have to eat lots of yogurt or take prescription bacterial supplements to repopulate E. coli in the intestines.  In more serious cases, physicians are forced to prescribe stronger antibiotics to kill the foreign bacteria that have taken up residence in the intestines to replace the E. coli!

Clearly, the hand-washing debate issue has been whether to kill ALL bacteria that live on the skin… using antibacterial soaps or simply removing the bacteria that should not be there…using plain soap and water.

Loss of protective Staphylococcus aureus and the Streptococcus bacteria breeds overgrowth of dangerous skin bacteria that are “non-normal flora” and are resistant to many antibiotics.  Also, fungus and other non-bacterial organisms find an easier nesting site when the normal flora is missing.

One pointed example is MRSA (Methacin-Resistant Staphylococcus aureus).  MRSA is a unique classification of skin bacteria that has seen increased prevalence since antibacterial detergents were introduced.

MRSA (Courtesy: Public Health Library)
MRSA (Courtesy: Public Health Library)

Sadly, marketers of antibacterial soaps and rubs have advertised the very opposite position stating their products are intended to reduce the MRSA risk (Hand Sanitizers Carry Unproven Claims to Prevent MRSA Infections, 2011).

Any risk for infection, however, is present only when there is direct contact from uncovered, weeping sores of a person with MRSA.  And, then, there must be a cut or open area on the skin to permit MRSA to transfer to the other person.  As long as the wound is covered there is no transmission.

This year the antibacterial handwashing debate finally reached fever pitch and recently reached its conclusion.  The U.S. Food and Drug Administration (FDA) began to collect regulatory evidence on June 29, 2016, of over 19 antiseptic additives designed to kill ALL bacteria, including the normal flora, Staphylococcus aureus and the Streptococcus bacteria (FDA requests additional information to address data gaps for consumer hand sanitizers, 2016).

The FDA, for the record, had started its research in the mid-1970’s.  FDA official recommendation has remained consistent: “wash with plain soap and water” (Topical Antiseptic Products: Hand Sanitizers and Antibacterial Soaps, 2016).

But, now, the FDA was prepared to step in and provide consumer protection.  It specifically requested of each manufacturer any “scientific data to support the safety and effectiveness of certain active ingredients used in topical consumer antiseptic rubs (including hand sanitizers) marketed over-the-counter (OTC)” (FDA requests additional information to address data gaps for consumer hand sanitizers, 2016).

Alcohol sanitizer gel (Courtesy FDA)
Alcohol sanitizer gel (Courtesy FDA)

Alcohol (60% or stronger) is known for its antiseptic effectiveness when soap and water are temporarily unavailable (Handwashing: Clean Hands Save Lives, 2016).  Alcohol is marketed in the common gel forms: ethanol or ethyl alcohol) and isopropyl alcohol.  Isopropyl formulations are more effective.

However, the other 19 commonly marketed agents such as triclosan (the antibacterial used in liquid soaps) and triclocarban (antiseptic for bar soaps) have been banned by the FDA by a regulation announced, September 2, 2016, just before Labor Day (FDA issues final rule on safety and effectiveness of antibacterial soaps, 2016) and effective, September 6, 2016 (FDA … Topical Antimicrobial Drug Products for Over-the-Counter Human Use Rule, 2016).

Why?  Quite simple.

“Companies will no longer be able to market antibacterial washes with these ingredients because manufacturers did not demonstrate that the ingredients are both safe for long-term daily use and more effective than plain soap and water in preventing illness and the spread of certain infections” (FDA issues final rule on safety and effectiveness of antibacterial soaps, 2016).

The FDA did make the accommodation for two unique conditions such as health care settings and the unavailability of “plain soap and water.”  So, alcohol-based hand sanitizers and wipes have been exempted from the FDA final rule-making (FDA issues final rule on safety and effectiveness of antibacterial soaps, 2016).

The FDA has separated from the list three chemicals:  benzalkonium chloride, benzethonium chloride and chloroxylenol (PCMX) to give manufacturers another year to come up with the required data to prove they are indeed safe and effective (FDA issues final rule on safety and effectiveness of antibacterial soaps, 2016).  There is a reason for the delay.  These antiseptics are usually blended with alcohol, which when used alone has been proven effective.

Your immune system is constantly vigilant against foreign invasion.  It uses many resources to combat new viruses, unwanted bacteria, and pesky fungi.

  • Still, washing with simple soap and lots of water is the BEST action you can do to support your immune system!
  • The soap loosens anything that is chemically bound together.
  • The water dilutes it away.

Now, you are probably asking… What is the long story, short?

WASH with “plain soap and water” (Topical Antiseptic Products: Hand Sanitizers and Antibacterial Soaps, 2016).

There is an old, old public health mantra…

the solution to pollution…is dilution.”


Ansari, S.A., Sattar, S.A., Springthorpe, V.S., Wells, G.A. and Tostowaryk, W. (1989). In vivo protocol for testing efficacy of hand-washing agents against viruses and bacteria: experiments with rotavirus and Escherichia coli.  Appl. Environ. Microbiol.  55(12). 3113-3118. Retrieved September 3, 2016 from http://aem.asm.org/content/55/12/3113.short

FDA Safety and Effectiveness of Consumer Antiseptics; Topical Antimicrobial Drug Products for Over-the-Counter Human Use Rule, 21 CFR 310 (2016). Retrieved September 6, 2016 from https://www.federalregister.gov/articles/2016/09/06/2016-21337/safety-and-effectiveness-of-consumer-antiseptics-topical-antimicrobial-drug-products-for

FDA issues final rule on safety and effectiveness of antibacterial soaps. (2016). FDA News Release, September 2, 2016. U.S. Food and Drug Administration (FDA).  Retrieved September 3, 2016 from http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm517478.htm

FDA requests additional information to address data gaps for consumer hand sanitizers. (2016). FDA News Release, June 29, 2016. U.S. Food and Drug Administration (FDA).  Retrieved September 3, 2016 from http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm509097.htm

Hand Sanitizers Carry Unproven Claims to Prevent MRSA Infections. (2011). FDA consumer fact sheet. U.S. Food and Drug Administration (FDA).  Retrieved September 3, 2016 from http://www.fda.gov/forconsumers/consumerupdates/ucm251816.htm

Handwashing: Clean Hands Save Lives. (2016). Centers for Disease Control and Prevention: CDC. Retrieved September 3, 2016 from http://www.cdc.gov/handwashing/

Ojajärvi, J. (2009). ‘Effectiveness of hand washing and disinfection methods in removing transient bacteria after patient nursing’, Journal of Hygiene, 85(2), pp. 193–203. Retrieved September 3, 2006 from https://www.cambridge.org/core/journals/epidemiology-and-infection/article/effectiveness-of-hand-washing-and-disinfection-methods-in-removing-transient-bacteria-after-patient-nursing/029F9D7837B3E28B473C9EF8AB893E17

Meers, P.B. and Yeo, G.A. (2009). ‘Shedding of bacteria and skin squames after handwashing’, Journal of Hygiene, 81(1), pp. 99–105. Retrieved September 3, 2006 from http://dx.doi.org/10.1017/S0022172400053808

Topical Antiseptic Products: Hand Sanitizers and Antibacterial Soaps. (2016). FDA information by Drug Class. U.S. Food and Drug Administration (FDA).  Retrieved September 3, 2016 from http://www.fda.gov/Drugs/DrugSafety/InformationbyDrugClass/ucm444681.htm

Turner, J. G., Gauthier, D. K., Roby, J. R., Larson, E., & Gauthier, J. J. (1994). Use of image analysis to measure handwashing effectiveness. American journal of infection control, 22(4), 218-223. Retrieved September 3, 2016 from http://www.sciencedirect.com/science/article/pii/019665539490071X

Remember Ebola? A cure has been found; it may help against Zika

Lebanon, New Hampshire.

I know it from the Lebanon Municipal Airport on the hill, which quietly services the local businesses (including the Dartmouth-Hitchcock Medical Center) at a profit to keep the town solvent. Dartmouth College in nearby Hanover also benefits from fast business transportation to Boston and White Plains, New York.

Still, what else is so special about Lebanon, New Hampshire? Other than its summer that lasts all but three weeks and snow storms that frequently exceed two feet? Nestled within the city limits is Adimab, a company that was founded in 2007. Adimab, among other things, performs research for antibody signatures and finds solutions to epidemic virus outbreaks.

As of this week, Adimab has published how it sampled blood from a survivor of the Ebola outbreak and isolated the signature that will be used for effective treatment of future Ebola events (Bornholdt, Z.A. et al., 2016). Maybe an Ebola vaccine. And, maybe a Zika vaccine, too.

The Science article reports the research team found a specific antibody signature that Ebola virus was susceptible (Bornholdt, Z.A. et al., 2016). They based this theory on their observation that the Zmapp antibodies regimen was only effective 40-percent of the time.  The Zmapp protocol was the mainstay of successful therapy for the Ebola-2014 outbreak (Jones, et al., 2005; Roddy, 2014; Marzi, et al., 2015).

To their surprise, they discovered the effective Adimab-discovered antibodies included 77-percent of the 349 antibodies of interest. The range of virus susceptibility was much larger than anticipated.

Then, the Adimab-discovered antibodies were tested on mice, which achieved 100-percent success neutralizing live Ebola virus. Such a potent response was unlike the weaker, 40-percent success rate seen with the Zmapp regimen.

The researchers of Adimab are credited with making their research findings public on the Internet without protecting their data for proprietary gain. Adamab anticipates the data will not only help produce a vaccine and more refined therapeutic options for Ebola, but also provide a knowledge base to speed research on the Zika virus.



Bornholdt, Z.A. et al. (2016).  Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak. Science. 18 Feb 2016. DOI: 10.1126/science.aad5788. Retrieved February 20, 2016 from http://science.sciencemag.org/content/early/2016/02/17/science.aad5788.full-text.pdf+html

Jones, S. M., Feldmann, H., Ströher, U., Geisbert, J. B., Fernando, L., Grolla, A., … & Daddario, K. M. (2005). Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nature medicine, 11(7), 786-790.

Marzi, A., Robertson, S. J., Haddock, E., Feldmann, F., Hanley, P. W., Scott, D. P., … & Feldmann, H. (2015). VSV-EBOV rapidly protects macaques against infection with the 2014/15 Ebola virus outbreak strain. Science, 349(6249), 739-742.  Retrieved February 20, 2016 from http://science.sciencemag.org/content/349/6249/739.full

Roddy, P. (2014). A call to action to enhance filovirus disease outbreak preparedness and response. Viruses, 6(10), 3699-3718. Retrieved February 20, 2016 from http://www.mdpi.com/1999-4915/6/10/3699/htm